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A~traet--A numerical treatment of the outflow of a two-layer laminar jet into a non-viscous 
continuous phase is performed. The dispersed phases (i.e. the central core and the concentric layer) 
are immiscible, incompressible and Newtonian fluids. The method of solution allows for the 
simultaneous determination of the shape of both interfaces, as well as of the corresponding velocity 
profiles. The equations of motion of both phases are obtained in a boundary layer approximation. 
The pressure jump in the radial direction, owing to forces of interfacial tension, is taken into 
account. Also studied is how the initial velocity profiles at the nozzle exit and some dimensionless 
parameters affect the interaction between the primary and secondary flow. Numerical results agree 
qualitatively with some experimental evidence. The approach can also be employed to predict the 
flow within a viscous continuous phase. 

1. I N T R O D U C T I O N  

Compound  jets have recently become of  essential interest, and what seems worth trying 
is to describe some methods for their generation. A method of  practical use, however, has 
been proposed by Hertz & Hermanrud  (1983), where a liquid jet is ejected through a 
layer of  immiscible liquid. After breaking the free surface, the primary jet flows out 
surrounded by a sheath of  the immiscible fluid, and the secondary jet thus obtained 
becomes accelerated by the pr imary one. Such flow is usually employed in ink-jet printing, 
granulators etc. The advantage of the compound jet flow exists in its capability to produce 
drops surrounded by a concentric surface layer of  prescribed properties. Moreover,  the 
second layer exercises control over both the instability and drop size of  the primary jet. 

Similar to the one-layer jet, the compound jet flow is time dependent and unstable. 
Following the classical approach of linear stability theory, we will consider the jet flow 
to be a superposition of  a non-disturbed (steady) flow and a perturbed (unsteady) one. The 
present paper studies the steady laminar flow of  an axisymmetric compound jet. The 
equations of  motion of  the primary and the concentric jets, as well as the boundary 
conditions at the interface surface, are written in a boundary layer approximation that was 
adopted by Gospodinov et  al. (1979), but for a one-layer jet. The numerical method 
proposed in that work is extended to the study of the flow of  a compound jet. Numerical 
results for the jet velocity profiles, the radii of  both the primary and secondary jets etc. 
are obtained. 

2. F O R M U L A T I O N  OF T H E  P R O B L E M  

Consider an axisymmetric compound jet with axis Oz (figure 1) directed vertically. Let 
the jet consist of  two immiscible, viscous and incompressible liquids of  densities pj and 
viscosities /~j. Furthermore,  let j = 1 for the central core of  the jet and j = 2 for its 
concentric part. We will use the index 3 to denote the parameters of  the surrounding 
medium when necessary. For  reasons of simplicity the latter is treated as a non-viscous 
gas at rest of  density P3 and pressure P3. However, there are no principal difficulties in 
incorporating the viscosity of  the surrounding medium. To avoid difficulties during the 
analysis of  the initial zone of the configuration, given by Hertz & Hermanrud (1983), 
simpler ways of  producing a compound jet are employed. Suppose that the liquids flow 
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Figure 1. Flow configuration. 

out of a nozzle with flow rates Qj and that the nozzle consists of two cylindric pipes with 
axis Oz (cross-sections are circular with diameters Dp and D s, respectively). Let us denote 
by Up and Us the corresponding mean outflow velocities of the central core and of the jet 
sheath part. 

As was noted, the flow of the compound jet will be considered to be laminar and steady. 
Two interfaces are observed within the flow, their equations reading 

r = [11 

Considering the steady case, they can be treated as stream surfaces and can be obtained 
by solving the differential equation 

U dHj Vj, r = ~ (j = 1, 2), [2] 
j-~-z = 

where (Uj, Vj) are the axial and radial components of the flow velocity. 
Although an additional concentric jet has been taken into account, it is clear that the 

flow behaviour of the compound jet is similar to that of the one-layer one. 
It has to be noted that the equations of motion, written by employing a boundary layer 

approximation and valid for a single liquid jet outflowing in a non-viscous gas, have been 
obtained by Duda & Vrentas (1967). If viscosity of the continuous phase is taken into 
account, then the equations of flow of a capillary jet in immiscible liquid-liquid systems 
are obtained (see Yu & Sheele 1975). This flow, however, was treated by Gospodinov et 
al. (1979) by employing a boundary layer approximation, whereas appropriate estimates 
of the order of magnitude of the flow parameters were adopted. When considering a 
compound jet flow, such an approach allows one to disregard the pressure variation Pj 
across the jet. This and some other simplifications hold because the flow parameters vary 
very slowly in the axial direction. As shown by Gospodinov et al. (1979), the boundary 
layer approximation of both the equations of motion and continuity has the form 

v dvj + vj 2 p, 1 dvj'  
J -~z dr = R e lJ , p j r d r ~ r -~-rr ) + 6 ' 

[3] 

c~--z (rUj) + (rVj) = 0 [4] 

and 

d P J = o  ( j = l , 2 ) ,  [5] 
~r 
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where 

1 Pt 0Pj 
F i - 2 F r  pj 0z' 

The above equations have to be applied to both the primary and secondary jet flows. 
However, non-dimensional quantities appear in [3]-[5] and the following scales have to be 
introduced: Dp/2 for distance, Up for velocity and ptu 2 for pressure. Since a second fluid 
is present, new parameters together with the Froude number (Fr = uZ/gDp) as well as the 
Reynolds number (Re = plDpup/#t) of the primary jet can appear in the equations. Such, 
for instance, are the density non-dimensional ratio Pa/Pt and the viscosity ratio #2/#t. The 
Froude number with g as gravity acceleration (see [3]) accounts for the gravity forces. 

Equations [3]-[5] are to be applied to a flow of very complicated geometry, i.e. bounded 
by the symmetry axis of the primary jet, as well as by two interfaces S:. Therefore, it seems 
necessary to complete the equations with additional conditions. The latter, however, are 
to describe physically the flow behaviour at the separated surfaces. The symmetry 
condition is to be written in the form 

and 

V t = 0 [6] 

OUt 
0--~- = 0. [7] 

Two groups of boundary conditions have to be satisfied at the interfaces (r = Hi). They 
interpret physically the interaction between the phases at both sides of the interface. The 
first group of boundary equations express the balance of tangential and normal stresses 
at the interface. Below they are written in a non-dimensional form, employing a boundary 
layer approximation: 

t o u j +  t #j  o u :  = o [81 
#l Or #1 Or 

and 

2 0 " j  / / )71 ( j  = l ,  2 ) .  [9] 
P j+ ,  - e :  = - w e  V ,  

Equation [9] calculates the difference in pressure on both sides of each interface, as 
balanced by the surface tension. However, these conditions provide two new dimensionless 
parameters, i.e. the Weber number (We = ptDpu~/at) of the primary jet and the ratio of 
the surface tension coefficients ¢j of the interfaces S:. Equation [8] gives the discontinuity 
of the axial velocity profile, owing to the difference between the viscosity coefficients of 
the liquids. It can be simplified for the outside surface $2 by considering the surrounding 
non-viscous gas #3 = 0. 

Two additional conditions that are to be satisfied at the interface are obtained from the 
second group of boundary conditions. The form of the first one is that of a non-slip 
condition for the axial velocities, 

U , = O " 2 ,  r = H t ,  [10] 

and is to be applied only to the inside surface S~. The second one, however, is a condition 
for zero mass flux through the interfaces. It has already been used in the form [2], when 
accounting for the surface of the primary jet and the outside surface of the concentric jet. 
A zero mass flux condition at the inner surface of the concentric jet is also to be satisfied. 
It seems convenient to write it in an equivalent form: 

V 1 = V2, r = H t. [11] 

Note that [10] and [11] provide the equality between the tangential and normal velocity 
components. 
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Thus, the mathematical description of the flow of a liquid compound jet is fulfilled. It 
consists of a system of four partial second-order differential equations, [3] and [4], 
completed by a set of boundary conditions, [6]-[11], along the jet axis r = 0 and at the 
interfaces Sj, respectively. However, the equations of the interface surfaces are not known 
in advance and are to be determined together with the rest of the unknown flow parameters 
by means of [2]. At the same time, they express the flow surfaces where parameters in 
different regions are to be put into agreement by satisfying the boundary conditions. This 
poses the main difficulties of the problem. In what follows a numerical solution is sought. 

To determine completely the compound jet flow, the outflow velocity profile must be 
prescribed at the nozzle exit: 

Uj = UNj (j = 1, 2). [12] 

Furthermore, to characterize the concentric jet flow, the dimensionless ratios of the average 
velocities of the outflow and the radii of both jets must be given together with the initial 
profile. These ratios are denoted by 

Ds Us=US up and R s = ~ p .  [13] 

Equation [12] serves as initial velocity profiles for the primary and concentric jets. Usually, 

Vj=0 ( j = l , 2 )  [14] 

for nozzles of practical use. 
It seems more convenient to eliminate initially the pressure term in the equation of 

motion [3]. To do this, an equation of the outside pressure distribution /'3 has to be 
incorporated: 

6~P3 1 P3 
~- - 2Fr p~" [15] 

Equation [15] corresponds to the hydrostatic pressure distribution within the surrounding 
gaseous phase. With [5] in mind, the axial pressure gradients dPj/Oz can easily be found 
from [9] and [15]. Then the Fj terms in [3] are in the form 

( p3) l 2 dH2 
F2= 1---~2 -~r+ Wee a2 dz [161 

and 

( p 3 )  1 2 / a  2 2dH2 H 2dHl'~ 
F l=  1 - - ~  ~ r + ~ e e [ x ~ H ~ -  -~-z + i- --~-z ]" [17] 

The first term on the r.h.s, of [16] and [17] accounts for the buoyancy effect of the primary 
and concentric jet flows, respectively, while the second term accounts for the effects of 
surface tension. A new dimensionless parameter P3/P2 appears in [16], but it can be 
expressed as a product of the ratios that have already been introduced: 

P2 Pl \Pl /  

3. NUMERICAL METHOD 

The equations, obtained by using a boundary layer approximation for each of the fluids 
and completed by taking into account the conditions of both outflow and phase 
interaction, are to be solved numerically. The numerical method adopted is similar to that 
employed by Gospodinov et al. (1979), but is somewhat improved, as shown by 
Gospodinov et al. (1981). In what follows, its most important aspects are revealed. 
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A new independent variable is introduced for each of  the dispersed phases (instead of 
the radial coordinate) by using a stream function defined as 

;0 tPl = x U d x ,  0 <~ r <~ H~(z), [18] 

and 

02 = x U d x ,  HI(z)  ~ r ~ H2(z). [191 
I 

Duda & Vrentas (1967) introduced for the first time Protean coordinates to investigate 
the flow of a single capillary jet. Their idea has been developed in the present study, 
whereas the stream function is introduced as an independent variable in the equations of  
motion of  both the primary and concentric jets. 

It can easily be found (see Gospodinov et al. 1979) that the stream function for phase 
1 can be normalized as 0 ~< qJl ~<½. The dimensionless flow rate of  phase 2 (i.e. the 
maximum value of  qJ2 in the plane of outflow) is specified as 

7J2 = ½ Us (R 2 - 1). [20] 

Note that for convenience the inner surface S1 is introduced as a zero streamline of the 
secondary flow: 

0 ~ ~/2 ~ ~I/2" [21] 

It is also convenient to use ¢ = z / R e  instead of  z. By performing a change of  the 
variables, a new unknown function r((, qJ) is obtained within the equations that describe 
the flow of both phases, i.e. 

Or____~j: = 2 {¢ = 1, 0 ~ l ~  ½ [22] 
O~Jj Uj = 2 ,  0 ~< qJ2 ~< qJz' 

while the condition along the symmetry axis for ~Jl = 0 is provided by rl = 0. The condition 
rl = HI(C) holds true, however, for ~Ol = ½ and qJ2 = 0. Moreover, r2 = H2(~) is valid for 
~O z = 7/2, i.e. at the surface $2. Radii H I and H2 are obtained naturally by solving [22]. 
Introducing variables of  Protean type, the radial velocity component Vj is determined by 
solving the equation of  the streamlines (see [2]). 

Vj = Uj ~ Re-l .  [23] 

The equations of motion at each knot of the grid are approximated by means of an implicit 
conservative scheme of second order of  accuracy with respect to ~Oj. The difference 
equations thus obtained are combined into a single problem by incorporating the condition 
of  the properly approximated dispersed phase interaction. 

The condition along the symmetry axis is employed as in Gospodinov et al. (1979). The 
condition of interaction between the concentric jet and the continuous phase is included 
in the numerical scheme. However, the latter is written by employing the same order of 
approximation as that involved in the motion equations. 

Thus a system of linearized algebraic equations with a tridiagonal matrix of  coefficients 
is obtained for each row of the grid and for a fixed value of ¢ (i.e. z). However, the velocity 
components in the knots of  the row are unknown functions. The coefficients in front of 
them, as well as the r.h.s., depend on U, V, r, H~ and H2, which implies the employment 
of  an iteration procedure. The values of  the unknown functions, included in the 
coefficients, are taken from the previous iteration. The process proceeds until the 
previously given accuracy is attained. The ¢ increases by A~ and the calculation proceeds 
for knots of the next row. The optimal values of the grid steps A~, A~Ol and A~b 2 are 
determined by performing a numerical experiment. 

The basic principles of design of  the difference equations, of  the approximation of [22] 
and [23], and of  the iteration process itself are similar to the idea suggested by Gospodinov 
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et al. (1981). Moreover, the scheme employed for the treatment of a viscous continuous 
phase, when regarding the problem of outflow of a one-phase capillary jet, can easily be 
applied to the numerical treatment of a compound jet. As related to the nozzle geometry, 
i.e. to the ratios Lp/Dp and Ls/Ds, the initial outflow profile [12] of phase 1 can be parabolic 
or plane, while that of phase 2 can be taken as a fully developed flow between two 
concentric pipes (see Bird et al. 1965) or as a plane one. As was noted in section 2, the 
present considerations involve a plane profile of outflow of phase 2. 

4. RESULTS 

Table I presents the flow dimensionless parameters for the cases that have been treated 
numerically. The system of two dispersed phases, together with the corresponding 
dimensionless parameters, are in accordance with part of the experiments described by 
Hertz & Hermanrud (1983). However, all this is done to obtain experimental evidence 
whenever possible. Since the continuous phase is air in all the cases considered, it is taken 
to be non-viscous. The calculations performed to control cases 1 and 2 show that the air 
viscosity does not affect the numerical results. The initial outflow velocity profile U~, of 
phase 1 is taken to be parabolic or plane when performing the numerical experiments (see 
notations 1 and 2 in the last column of table 1). Since the compound jet flows out 
horizontally in all the cases treated, the effect of the gravity acceleration has been ignored 
throughout. 

Cases 1 and 2 correspond to a system, consisting of (80% H 2 0 + 2 0 %  glycerol 
without dye), i.e. phase 1/phase 2, whereas the initial flow rates are Qp= 36 x 10 -9  

and Qs = 115 x 10-9m3/s, the average velocity of outflow of phase 1 is up=8.1 m/s, 
al = 20 x 10 -3 N/m and Pl = 1.9 × 10 -3 N s/m 2. Case 3 is obtained from case 2 but it is 
assumed that the ratio of the average outflow velocity is Us = 1. The main reason that 
makes the compound jet differ from the one-layer jet is the presence of an additional 
interface, the stream surface $1, which separates two fluids of different physical properties. 
But this is not so in cases 1-3, where the fluids from both sides of the stream surface S~ 
are supposed to be the same, but flowing out with different initial velocity profiles. We 
proceed to study the interaction of the fluids through Sl. To calculate these three cases, 
we must use P2 = P~ for surface S~ instead of [9], and employ tr~ for surface $2 as the only 
surface tension coefficient (cr2/cr~ = 1). Streamlines for cases 1 and 2 are drawn in figures 
2 and 3. It is clear that the change of surface $2 corresponds approximately to the observed 
change of the surface of a one-layer jet (see Gospodinov et aL 1979). A certain deflection 
of the current lines in the 0 ~< r ~< H I region can be explained (especially in case 1) by means 
of the more intensive exchange of momentum, which is due to the form of the initial 
velocity profiles of phases 1 and 2. This, however, is confirmed by the pattern of the profiles 
of the axial components (case I) drawn in figure 4. Moreover, these profiles confirm that 
the relaxation of the velocity profile is considerably weaker in case 2 (figure 5). The 
variation of radii Hi(z) and Hz(z) of the surfaces $1 and S 2 (case 1) corresponds 

Table 1 

p2 P2 ~2 

Case Re We ~l Pl at Rs Us 

1 320 237.2 1 1 0 2.56 0.64 1 
2 320 237.2 1 1 0 2.56 0.64 2 
3 320 237.2 1 1 0 1.08 1 2 
4 304 94.6 1 1 0.385 3.33 0.32 1 
5 304 94.6 1 1 0.385 3.33 0.32 2 
6 316 237.2 0.53 1 3.6 2.45 0.42 1 
7 316 237.2 0.53 1 3.6 2.45 0.42 2 
8 304 94.6 I I 0.278 2.05 1 1 
9 304 94.6 1 1 0.278 2.05 1 2 

10 304 94.6 1 1 0.278 1.5 2.47 l 
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Figure 2. Streamlines. Figure 3. Streamlines. 
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Figure 4. Axial velocity distribution. 

qualitatively to the experimental observations of Hertz & Hermanrud (1983). Ht increases 
for z > 6, while H2 decreases, although only slightly, i.e. phase 2 delays phase 1 while phase 
1 tends to accelerate phase 2, owing to the exchange of momentum. 

The record of the variation of the radial component of velocity V(r), considering three 
cross-sections along z (figures 6 and 7), confirms our conclusions. Velocity V, being zero 
along the symmetry axis, grows and attains its maximum value in the region of flow of 
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Figure 5. Axial velocity distribution. 
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Figure 6. Radial velocity distribution. 

phase 1 and S~ expands, although slightly, in both cases. The velocity profile "passes" 
through zero near the S] surface, i.e. near the region r --- H 1. Then it changes sign and 
attains a local minimum within phase 2. However, V varies slightly near the surface $2. 
Its value at the surface $2 is finite and negative for r = H2, due to the contraction of the 
compound jet surface, which is affected by the exchange of momentum, as well as by forces 
of surface tension. The narrower boundaries of V(r) in case 2 are due to the weaker 
interaction between the phases. 

To test the calculation procedure, we must eliminate entirely the effect of the difference 
between the initial velocity profiles. Thus we analyse case 3. In fact the latter presents a 
one-layer capillary jet, flowing horizontally out of a nozzle of dimensionless radius Rs. 
Moreover, the jet's initial profile is homogeneous. As expected, results (not presented 
graphically) show that the compound jet remains cylindrical while the initial velocity 
profile does not relax along z and r. 

The parameters in cases 4 and 5 represent a system consisting of (80% H 2 0 +  
glycerol + dye)/(silicon fluid) with Up = 8.1 m/s, ?tt = 2 × 10 -3 N s/m 2, tr~ = 72 × 10 -3 and 
0" 2 = 20 × 10  - 3  N/m, while the initial flow rates are the same as in cases 1-3. What is typical 
here is that both phases are not the same as in the previous cases and forces of interfacial 
tension act upon surface S~, while densities and viscosities remain intact. 
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Figure 7. Radial velocity distribution. 
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Figure 8. Effect of  the initial velocity profiles on the change of  radii. 

Numerical results show that the change of surface $2 is similar to the change of the 
surface of a one-layer capillary jet. Radius //2 decreases strongly (figure 8) because the 
initial outflow velocity Us is about three times lower than the average initial outflow 
velocity Up of phase 1. Hence, the dispersed phase 2 is accelerated considerably down- 
stream. Radius HI of the internal interface (z > 4 in case 5, z > 0 in case 4) grows 
accordingly, owing to the delay that phase 2 exercises on phase 1. Since the St surface 
deflects in the opposite direction, i.e. away from the axis of symmetry, the forces of 
interfacial tension tend to increase this deflection even more. However, forces of interfacial 
tension between the viscous phase 2 and the air act upon surface $2, as in the case of a 
one-layer jet. 

What has already been stated is valid for cases 4 and 5 as well, but there still exists a 
certain difference in the change of HI (i.e. contraction for 0 ~< z ~ 4) which can be explained 
(as in case 1) by the difference between velocity profiles for case l, which induce intensive 
exchange of momentum through the surface. There occurs a qualitative coincidence with 
the experimental evidence presented by Hertz & Hermanrud (1983). 

The change of the surface gradient t~U/t3r at S] (figure 9) shows that the viscous 
interaction between the dispersed phases is more significant at small values of z and for 
a parabolic profile of outflow of phase 1. As for friction, it decreases with the increases 
of z [this effect is caused by relaxation of the U(r) profile]. 

~r 

1.6 

1.2 

0.8 J 

0.4 

0 
i i i J j 

4 8 t2 16 20 

Figure 9. Variation of  the axial velocity gradient at 
the interface of  the dispersed phases. 
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Figure 10. Effect of  the #2/Pl ratio on the shape of the 
two interfaces. 
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Cases 6 and ? are obtained from cases 1 and 2, although the dispersed phase 2 is water 
with an initial flow rate Qs = 75 x 10 -9 m3/s while the average velocity of outflow is 
Us -- 5 m/s. The coefficients of  surface tension are tr~ = 20 x 10 -3 and tr 2 = 72 x 10 -3 N/m, 
respectively. What is worth noting here is that there is a difference between the viscosities 
of  phase 1 and phase 2, #2/#i = 0.53. The character of  Hjz) and H2(z), shown in figure 
10, is in agreement with the relations that have been disclosed. As compared to the previous 
cases, H2(z) decreases strongly because the acceleration of  the concentric jet is stronger 
than the delay of  phase 1. This effect, however, is caused by the difference between the 
viscosities. 

What seems to be of interest is the case where both dispersed phases flow out with one 
and the same velocity. However, this is the way of obtaining cases 8 and 9, for which 
Up = u s = 8.1 m/s, while the rest of the parameters remain the same as in cases 4 and 5. 

Results show that a total minimum occurs in the U(r) profile for cross-sections that stay 
close to the nozzle exit (case 8). This is a result of the initial delay of the liquid layers of 
phase 1, the latter being close to the surface S~. The delay, however, becomes smaller and 
smaller with increasing z (figure 11). 

Case 9 is not presented graphically, since, regardless of the fact that the compound jet 
consists of two different dispersed phases and a2/a~ > 0, the initial homogeneous velocity 
profile does not relax along z, while S~ and $2 remain cylindrical. 

A better illustration of what has been stated is given in figure 12, which shows the 
variation of U(r) for a number of cross-sections along z (case 10). Case 10 differs from 
case 8 only with respect to the outflow velocity, Us -- 20 m/s. Here the effects of delay are 
strongly evident (figure 12). 

5. C O N C L U S I O N  

The method presented provides the flow parameters of both the primary and concentric 
jet. One of its advantages exists in determining the characteristic equations of the interfaces 
(the radii of the primary and secondary compound jet surfaces). The second advantage 
follows from the possibility of studying the effects of interaction between two liquids 
through the inner interface. 

The results illustrate the effect of the initial velocity profiles on both dispersed phases 
when they coincide and when they differ from one another. The effect of the difference 
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between viscosities has been revealed and the action of forces of interfacial tension upon 
surfaces St (the central core) and $2 (the compound jet) analysed. The distribution of the 
velocity axial component U(r) has been obtained where a local minimum occurs. The effect 
of the velocity of outflow Us of phase 2 has also been studied. 

The numerical method gives a solution of the case when the continuous phase 3 is 
considered to be a viscous fluid (i.e. a liquid). 
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